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a b s t r a c t

Parallel computing was tested regarding its ability to speed up chemometric operations for data analysis.
eywords:
arallel computing
hemometrics
omprehensive two-dimensional gas
hromatography
etabolic fingerprinting

A set of metabolic samples from a second hand smoke (SHS) experiment was analyzed with comprehen-
sive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC–TOFMS). Data was
further preprocessed and analyzed. The preprocessing step comprises background correction, smoothing
and alignment of the chromatographic signal. Data analysis was performed by applying t-test and par-
tial least squares projection to latent structures discriminant analysis (PLS-DA). The optimization of the
algorithm for parallel computing led to a substantial increase in performance. Metabolic fingerprinting
showed a discrimination of the samples and indicates a metabolic effect of SHS.

© 2010 Published by Elsevier B.V.
. Introduction

The aim of metabolomics is a comprehensive quantitative and
ualitative characterization of the metabolome of a biological sys-
em and its dynamics [1,2]. However, due to the large qualitative
nd quantitative diversity not all components and processes of the
etabolome can be analyzed at the same time on one analyti-

al platform. Therefore, different strategies have been established
ocusing on different biological tasks. Metabolic fingerprinting is
ocused on a relative comparison of biological systems based on
heir metabolomic patterns which could be addressed by one
xperiment or one analytical platform without optimizing the
ystem for a certain small subset of metabolites. The strength
f metabolic fingerprinting is its ability to screen and classify
uge numbers of samples in short progression. Very common are
yphenated techniques like gas chromatographic–mass spectro-

etric (GC–MS) or liquid chromatographic-mass spectrometric

LC–MS) couplings [3–6]. The aim of such hyphenation is the sep-
ration of different metabolites and matrix before they enter the
S. Considering the complexity of metabolic samples much effort

as been made to further increase the separation power of the ana-

∗ Corresponding author at: Institute of Ecological Chemistry, Cooperation Group
Analysis of complex molecular systems”, Helmholtz Zentrum München, D-85764
euherberg, Germany. Tel.: +49 089 3187 4544; fax: +49 089 3187 3510.

E-mail address: ralf.zimmermann@helmholtz-muenchen.de (R. Zimmermann).

039-9140/$ – see front matter © 2010 Published by Elsevier B.V.
oi:10.1016/j.talanta.2010.09.015
lytical platforms or to adapt them for a special purpose. Basically,
these approaches could be divided into two efforts.

The first one focuses on the analytical platform itself and tries
to further enhance the selectivity or separation power of the hard-
ware. With regard to the enhancement of the chromatographic side,
higher dimensional separation techniques, like comprehensive
two-dimensional gas chromatography (GC × GC) [7–9] in combi-
nation with a fast time-of-flight MS, have become very popular
over the last years. Due to the introduction of a second orthogo-
nal separation direction, the metabolites become separated over a
plane. The increased selectivity of such systems leads to a higher
separation power and offers also additional opportunities for data
analysis of metabolomic data [10–15].

The second attempt concentrates on the application of chemo-
metrics to further improve the physical/chemical separation.
Chemometrics can be applied during data acquisition, data process-
ing and/or data analysis [16–22]. Former attempts for application
of chemometrics to GC or MS during data acquisition were utilized
e.g. by Phillips [23]. Nowadays, the application of chemometrics
for the preprocessing of chromatographic and/or mass spectro-
metric data [24–27] is more common. The main objectives are the
enhancement of the analytical signal and its isolation from inter-
fering signals [12,24,28]. A further field of chemometrics in GC/MS
based metabolomics is the statistical analysis of the data [29–31].

The principle objects here are the classification of the different sam-
ples according to their metabolite pattern, (semi-)quantification
and the identification of discriminating metabolites [32]. In any
case, chemometrics has to be applied with care, since complex
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ssues require a careful selection and interpretation of chemometric
ools [33,34].

Both attempts can only be realized at the expense of data size
nd computationally intensive processing. While higher dimen-
ional separation in combination with fast MS systems produce
ery large data sets as a consequence of high sample throughput
nd fast repetition rates of MS detection, chemometrical operations
n these data sets can become very intense in resource demands
nd time, if the complete data set of many samples should be con-
idered.

At the moment only a few vendors offer commercial software
or GC × GC (–MS). These packages (e.g. Pegasus, LECO Corpo-
ation or GC-Image, Zoex Corporation) provide basic processing
r analyzing tools and are highly suitable for target analysis
ue to a user-friendly and sophisticated graphical user interface.
et state-of-the-art chemometric operations like proper align-
ent or multivariate statistics for a comprehensive non-targeted

nalysis are lacking. In addition, this software does not support
tate-of-the-art architectures like 64-bit, multi-core processing
r emerging techniques like general purpose graphic process-
ng units (GPGPU’s). One opportunity could be the application of
oftware packages developed for closely related data sets like two-
imensional gel electrophoresis. Since this sector has a larger sales
olume the software is in most cases further developed and it
ould meet the requirements for the processing GC × GC data files.
ecently published work [35] looks very promising but currently
he adaptation is not ready for end user application. Appropriate
lgorithms can also be programmed based on popular program-
ing languages like MatLab, R, and others.
This paper will focus on the implementation of parallel com-

uting [36,37] for analysis of GC × GC–TOFMS data from metabolic
ngerprinting to speed up chemometric operations [22,38] based
n MatLab.

The main purpose of parallel computing is the ability to either
istribute one large data block to smaller blocks or speed up
computer algorithm by distributing different data sets (e.g.

rom GC × GC–TOFMS) on different workers. Nowadays, the first
pproach is only relevant for 32-bit Windows systems in which a
ingle application can address only about 3 GB. While data is often
ollected and stored in lower precision like integer, data processing
s often based on double precision operations which increase the
pace needed in memory size of the data dramatically. Data sets
rom GC × GC–TOFMS often reach this boarder, at least if multi-
ariate operations are part of the processing. With the introduction
f 64-bit architecture and the adaptation of the software, the 3GB
oarder has vanished. Now the limitation is the physically available
emory of the computer system.
Of much more interest is the ability to speed up data process-

ng by distributing the processing of data to different workers. A
equirement for parallel computing is the feasibility to distribute
he original data set and to do all further operations on such a
istributed set. While the first necessity depends on the used soft-
are the second one depends on the structure of the data and the

ind of data operation. A problem could be an algorithm which
as to access data from the memory of another worker. Such inter
orker processes would slow down the overall process due to

xcessive data transfer. Therefore, as a rule of thumb, the data has
o be distributed in such a manner, that all workers can operate
n their own. For that reason it could be applicable to redistribute
he data set during operation to meet the requirements of each
rogramming step. An example is the alignment of different sam-

le chromatograms to a target chromatogram. Popular algorithms
re based on piecewise shifting a small section of a sample chro-
atogram along a target chromatogram within predefined limits

ntil some quality criterion is optimized. In case of GC × GC such an
lignment has to be done in two dimensions. If the chromatogram
nta 83 (2011) 1289–1294

is distributed among multiple workers it could be necessary to
shift a part of the chromatogram from one worker to another,
which would break the mentioned rule. For this example a total
chromatogram has to be stored on one worker. Still, the whole pro-
cessing can benefit from distribution, if different workers processed
different chromatograms. While such a distribution scheme can be
suitable for alignment, it can become a problem, if statistics should
be applied to the data set. In such a case quantitative data from dif-
ferent chromatograms but the same time index has to be processed
from one worker. In that case, the data has to be redistributed prior
to statistics.

Technically, parallel computing is based on multi-core technol-
ogy. Multi-core processors consist of two or more in most cases
identical individual processors. These cores are normally placed
within one central processing unit (CPU) and share some of the
architecture of the hosting chip. Up to date, dual-core CPU’s have
come up to a standard in personal computers (PC) and quad-
or octo-core CPU’s are now commercially available. The gain in
performance depends mainly on the used software. In order to take
advantage from multi-core architecture, the used software has to
divide pending work into different threats which can be processed
by different cores. A limitating factor is the ability to divide a
task into different threats and the transfer time. The maximum
achievable speed-up is described by Amdahl’s law [39]. MatLab
introduced a parallel computing toolbox to take advantage of
local multi-core architecture. However, scripts and data structure
have to be modified and optimized for the application of parallel
computing.

2. Experimental

2.1. Sample material

Prepared sample material was obtained from Fiehn Labs,
Genome Center, UC Davis, CA, USA and had already been analyzed
there by GC–MS and FT-ICR-MS and subsequent statistical analysis
[40].

Male Sprague–Dawley rats were exposed with aged and diluted
side stream cigarette smoke at a concentration of 1 mg/m3 total
suspended particulates for 6 h/d for one (group one, 7 individuals)
or 21 days (group two, 7 individuals). There was also a control group
with 8 and 7 individuals for each group. (The original experiment
includes additional groups from 3 and 7 days exposure).

An aliquot of 30 �L rat plasma was transferred into
clean microcentrifuge vial and 400 �L of solvent (iso-
propanol:acetonitrile:water = 3:3:2) were added. The mixture
was vortexed for 10 s and then mechanically shacken for 5 min at
4 ◦C. After centrifugation at 13,000 × g for 2.5 min the supernatant
was transferred to new centrifuge tubes and taken to dryness
under vacuum and centrifugation. Vials were filled with nitrogen
and stored at room temperature until derivatization.

Methyl oxime derivatives were produced by dissolving the dry
extracts in 50 �L of freshly prepared O-methylhydroxylamine·HCl
(40 mg/mL in pyridine). Incubation was done at 37 ◦C for
90 min under continuous shaking. Subsequent trimethyl sily-
lation was achieved by the addition of 50 �L of N-methyl-N-
trimethylsilyltrifluoroacetamide, followed by continuous shaking
for 30 min at 60 ◦C.

The analysis of variance of the original GC–MS data set by
Fiehn Labs from plasma and lung samples, showed that several
metabolites were significant at the 0.05 level, including palmitoleic,
palmitic and arachidic and cis-2-octadecanoic acid.
2.2. GC × GC–TOFMS

GC × GC–TOFMS analysis was performed on a Pegasus III
GC × GC–TOFMS instrument (LECO Corporation, St. Joseph, MI,
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SA) equipped with cryogenic modulation. The separation on
he first dimension was performed on 30 m × 250 �m × 0.25 �m
olGel-1ms. The separation on the second dimension was per-
ormed on 2 m × 0.1 �m × 0.1 �m BPX50. All columns were
btained from SGE (SGE Analytical Science Pty Ltd., Ringwood,
ustralia). 1 �L tempered (15 ◦C) extract was injected splitless to
C × GC–TOFMS at 250 ◦C injection temperature. Both columns
ere housed in the same oven and are subjected to the same

emperature gradient (70 ◦C for 2 min followed by a temperature
radient of 5 ◦C/min to an end temperature of 300 ◦C hold for
0 min). The modulation period was set to 1 s. Transfer line and

on source were set to 280 and 250 ◦C, respectively. Masses were
ollected from 35 to 600 amu with 100 spectra/second.

.3. Soft- and hardware

Data acquisition was performed on LECO ChromaTOF software
.01. Unprocessed raw files were exported as netCDF with an aver-
ge size of 1.1 GB per file. The complete data set was subsequently
mported to MatLab R2009b using built in NetCDF-C interface func-
ions. Data processing includes smoothing, background correction
nd alignment of the chromatographic signal. Feature reduction
nd selection was performed using t-test, partial least squares/ pro-
ection to latent structures discriminant analysis [20,21] (PLS-DA).

Programming was optimized for parallel computing using Mat-
ab and Parallel Computing Toolbox 4.2 for MatLab. Data were
ptimized for alignment applying MatLab ‘mslowess’ function
with a Gaussian Kernel function) and ‘msbackadj’ function (with

shape-preserving piecewise cubic interpolation as regression
ethod for baseline estimation). For the alignment process we used

he well-known COW algorithm [41] and it’s MatLab implementa-
ion for one-dimensional chromatographic signals [42] and applied
t to two-dimensional GC × GC chromatograms.

Programming was performed on a 64-bit Quadcore System
Intel Core 2 Quad Q9550) equipped with 8 GB Ram.

. Results and discussion

.1. Parallel programming and speed up

Fig. 1 shows the applied distribution and redistribution scheme
or the processing of GC × GC–MS data. We decided to readout
nd process mass traces successively starting with most compre-
ensive mass traces like m/z = 73. The processing starts with data

mport and the assembly of an appropriate data structure. First raw
ata are exported from LECO Pegasus software as netCDF (Network
ommon Data Form) file format. NetCDF data are very common
s system independent exchange format for chromatographic-
ass spectrometric hyphenations. The masses and intensity values

re stored lineary, so-called variables according to their detection
rder. While a partial or complete readout is straightforward, the
ppropriate reshaping of the data can become time-consuming
nd would benefit from parallel processing. Since the access to
he hard drive takes quite a lot of time, any redundant read-write
rocess to the hard drive should be avoided during data process-

ng. The original data set of 29 samples was divided coresponding
o their acquisition order into four blocks according to the max-
mum number of available workers (Fig. 1A). For the import an
lready distributed three-dimensional dummy matrix was created.
he dimensions are chosen according to the nature of the GC × GC

hromatogram with first separation dimension as first dimension
nd second separation dimension as second dimension. Therefore,
single mass trace can be regarded either as a sum of 2578 one-
imensional chromatograms arranged along the first dimension or
00 one-dimensional chromatograms arranged along the second
Fig. 1. Distribution scheme optimized for parallel processing. The distribution has
to be redistributed to meet the requirements of the actual processing step.

dimension. The mass traces were stored in the third dimension (7×
controls from day 1, 8× 1-day exposed rats, 7× control from day
21, 7× exposed rats from day 21). Therefore, every worker has to
read out and restructure 7 or 8 raw data sets.

After readout the raw data have to be aligned to a master chro-
matogram. In case of GC × GC the alignment has to consider a
possible shift in two dimensions. The alignment process has to
respect the fact, that a disturbance of the chromatographic pro-
cess could affect different chemical species in a variety of ways.
Considering the case that two compounds are only separated by
the second dimension, a fluctuation could also affect the separa-
tion in the first dimension as well as the separation in the second
dimension.

We decided to align the dimensions successively, starting with
the first dimension. For that purpose the distributed data matrix
had to be redistributed in a way, that any 1D-chromatograms of
each 2D matrix of a single mass trace are not split among dif-
ferent workers (x-direction) and all chromatograms belonging to
the same second dimension time index but to different samples
are addressed to the same worker (z-direction). Fig. 1B shows an
appropriate distribution scheme. The old distribution (solid line) is
replaced by a new distribution (dashed line). Each worker has now
to align 25 × 28 chromatograms to a target chromatogram.

After the alignment of the first dimension the second dimen-
sion also has to be aligned. The distribution scheme had to be

redistributed again (Fig. 1C). This processing step also includes a
background correction and data smoothing algorithm to prepare
data for statistics (t-test) which was performed within this dis-
tributed processing step as well.
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Due to the limitations given by Amdahl’s law, Fig. 2 illustrates

F
e

ig. 2. Gain in performance due to the incorporation of additional workers for one
C × GC mass trace. The absolute gain in performance decreases with additional
orkers.

Fig. 2 shows the mean speed up due to parallel computing for
ne mass trace. For this test 10 different mass traces were prepro-
essed 10 times on 1–4 cores. The given times also comprise the
ime for saving the results and the processed data matrix to the
ard drive. The highest decrease is observed from single-core to
ual-core processing. However, this speed up does not only reflect
he speed up by parallel computing. If only one core is present, it has
o handle also all other processes (e.g. background processes of the
perating system) of the host system as well, while an additional
ore could be exclusively used for data processing. The relative gain
n performance decreases with every added core, which is consis-
ent with Amdahl’s law.

.2. Statistics and metabolic fingerprinting

Fig. 3 shows the results from data processing and basic statistics.
o reduce the number of variables for PLS-DA, the chromatograms
rom exposed rats were first statistically compared to its con-
rol. For this well-defined two class problem a t-test was applied
s part of the preprocessing to identify significant differences
ithin the chromatograms. Found positions of significant differ-

nces (p < 0.05) were further input to a PLS-DA analysis in order
o test their discriminating strength to separate between the chro-

atogram of control and exposed rats. The data were preprocessed

pplying square root scaling and mean centering. The number of
atent variables (LV’s) were chosen after applying “leave one out” –
ross validation. The output of the PLS-DA (loadings and weights)
as further used to calculate “variable importance for/influence

n projection” – values (vip) [15,20,43]. A reference chromatogram

ig. 3. The left picture shows the chromatogram obtained from the GC × GC–TOFMS analy
xposure and 21-days SHS exposure. The vertical beam denotes the position of some disc
nta 83 (2011) 1289–1294

(rat after 21 days exposure) is displayed at the left side (Fig. 3A). To
clarify matters, we only show the mass range between 35–250 amu
of the GC × GC–MS space. The processing was done for the com-
plete range (35–600 amu). Fig. 3B shows the identified positions,
so-called features (vip > 25), within the GC × GC–MS space which
are discriminating one day exposed rats from its control group. The
same applies to the 21-days group in Fig. 3C. The pattern of the
features shown in Fig. 3B and C clearly reflects the fragmentation
pattern shown in Fig. 3A. For the sake of a better comparison the
fragmentation pattern of a group of peaks is highlighted. Compar-
ing Fig. 3B and C it is also obvious, that the metabolic profile alters
with longer exposure period.

To save time, data processing is often done only on selected mass
traces. The most prominent would be mass trace m/z = 73 because
the corresponding ion is most common for TMS-derivatization
products. Fig. 4A and B shows the mass trace m/z = 73 and the total
ion signal (TIC) from the chromatogram shown in Fig. 3A. Even if
the TIC chromatogram contains more information the peak pattern
would look very similar to the m/z = 73 chromatogram. However,
if we compare the corresponding feature maps Fig. 4C (only high-
est vips of m/z = 73) with Fig. 4D (highest vips over all mass traces)
it becomes obvious that many highly significant features can not
be located due to the reduction to prominent mass traces. This
indicates the need for comprehensive but also fast data processing.

Fig. 5 reveals clustering of samples based on the PLS-DA scores.
If individual mass traces are inspected, time intensive cross valida-
tion of the model can be distributed among the workers [22]. For the
interpretation of the scores plot it has to be considered, that neither
a test for outliers nor a correction of the raw data via internal stan-
dards or normalization was performed. We intentionally excluded
this kind of quality control, since it is very time-consuming and
therefore not always compatible with high throughput analysis.
Control and treated individuals could be separated for both cases
using LV 1 for day one and LV 1 and 2 for day 21. For both cases the
individuals with numbers 1 and 11 are separated from their group.
The inspection of Q-Residuals and Hotelling’s T2 indicate possible
outliers. An additional reason for the poor clustering could be the
biological diversity of the individuals which could be associated
with a different response to SHS.

3.3. Outlook for further acceleration of data processing
that an additional distribution of data to a limited number of addi-
tional workers will only slightly increase the overall process. To gain
a noticeable acceleration a huge number of additional workers have
to be added. A realization based on CPU’s would be very expen-

sis of rats’ plasma. Figure (B) and (C) indicate discriminating features for 1-day SHS
riminating features. The horizontal plane indicates m/z = 73 (refer Fig. 4).
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Fig. 4. Figures A and B show the mass trace m/z = 73 and the TIC signal from the chromatogram also shown in Fig. 3. Figure C show the detected features found on mass trace
m/z = 73. Figure D shows the increase in information (more features are found) if the complete data set is analyzed.

Fig. 5. Scores plot from PLS-DA. Left: day one (triangle: control; circle: SHS treated), right: day 21 (triangle: control; circle: SHS treated).
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ive. An affordable opportunity could be the access of graphical
rocess units (GPU’s). GPU’s are usually located on the graphic card
f computer units. Due to their focus on graphical operations they
re designed for high performance matrix and vector operations.
nlike CPU’s they consist of hundreds of cores which are struc-

ured in parallel. By the help of general purpose GPU’s (GPGPU’s)
nd the development of the compute unified device architecture
CUDA) by NVIDIA it is now possible to incorporate the massive
oating point computationally of these processors for a broad range
f applications. CUDA could further be implemented into MatLab
ia commercial and free software. It is now possible to outsource
ntense operations from the CPU to GPU and take advantage from
PU resources. Depending on the kind of computer operations a
ain in performance up to ×100 is reported in literature. First exper-
ments look very promising, however only basic operations could
e addressed so far.

. Conclusions

Modern analytical platforms like GC × GC–TOFMS in combina-
ion with sophisticated data processing and chemometric data
nalysis require strong computational power to obtain the ability to
andle large amounts of data in appropriate time. The application
f parallel computing is an attractive and affordable opportunity.
ophisticated programming substantially speeds up the overall
rocess and allows resource-intensive chemometric operations.
he time saving enables a more comprehensive investigation of
he data. New techniques like GPGPU’s will further increase the
fficiency of processing and become very attractive considering the
ost-performance ratio.
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